Memetic Algorithms for Neural Network Training in Bioinformatics

نویسنده

  • Y. G. Petalas
چکیده

Bioinformatics is a new, rapidly growing, scientific area that exploits computational techniques to study DNA and protein sequences. A particularly interesting task in this context is to predict the structure of proteins. Artificial Neural Networks can efficiently handle classification and prediction tasks. On the other hand, Memetic Algorithms belong to the class of heuristic methods that have been developed to address hard optimization problems. Since training Artificial Neural Networks is such a problem, Memetic Algorithms can be used to address it. In this paper we propose a LocalSearch-Based Memetic Algorithm, and study its performance as a neural network training method. The resulting Neural Network is applied for the prediction of the cellular localization sites of two proteins. The performance of the proposed method is compared to that of alternative memetic and global optimization algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

Memetic cooperative coevolution of Elman recurrent neural networks

Cooperative coevolution decomposes an optimisation problem into subcomponents and collectively solves them using evolutionary algorithms. Memetic algorithms provides enhancement to evolutionary algorithms with local search. Recently, the incorporation of local search into a memetic cooperative coevolution method has shown to be efficient for training feedforward networks on pattern classificati...

متن کامل

ارائه مدلی جهت پیش بینی بیماری دیابت با استفاده از شبکه عصبی

Introduction: Meta-heuristic and combined algorithms have a great capability in modelling medical decision making. This study used neural networks in order to predict Type 2 Diabetes (T2D) among high risk individuals. Methods: This study was   an applied research. Data from 545 individuals (diabetic and non-diabetic), in Diabetes Clinic of Hamedan University of Medical Sciences, we...

متن کامل

Two Novel Learning Algorithms for CMAC Neural Network Based on Changeable Learning Rate

Cerebellar Model Articulation Controller Neural Network is a computational model of cerebellum which acts as a lookup table. The advantages of CMAC are fast learning convergence, and capability of mapping nonlinear functions due to its local generalization of weight updating, single structure and easy processing. In the training phase, the disadvantage of some CMAC models is unstable phenomenon...

متن کامل

Comparative Analysis of Neural Network Training Methods in Real-time Radiotherapy

Background: The motions of body and tumor in some regions such as chest during radiotherapy treatments are one of the major concerns protecting normal tissues against high doses. By using real-time radiotherapy technique, it is possible to increase the accuracy of delivered dose to the tumor region by means of tracing markers on the body of patients.Objective: This study evaluates the accuracy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004